ABSORPTION SPECTRA OF 3-OXO-2,3-DIHYDROTHIO-

NAPHTHENE AND ITS DERIVATIVES

XVII.* DYES FROM 7-IODO-2H-NAPHTHO[1,8-bc]THIOPYRAN-3-ONE

M. A. Mostoslavskii, S. I. Saenko, and V. L. Belyaev

UDC 668.8:547.818.5:543.422.6

Conditions have been found for the iodination of naphtho[1,8-bc]thiophen-2-one. A number of new thioindigoid dyes have been synthesized and their photochemical isomerization has been performed in benzene.

We have previously [2] described the chlorination and bromination of naphtho[1,8-bc]thiophen-2-one (I) with elementary halogens. The iodination of (I) with metallic iodine does not take place. The reaction of iodine chloride under severe conditions forms 6-iodonaphtho[1,8-bc]thiophen-2-one (II) contaminated with a small amount of 6-chloronaphtho[1,8-bc]thiophen-2-one, which is readily separated by a single recrystallization.

The synthesis of (III-VI) (Table 1) takes place smoothly under the conditions found for the corresponding bromine derivatives [2, 3].

The condensation of (V) with the p-dimethylaminoanils of substituted thionaphthene quinones gave a number of unsymmetrical dyes (VII-XIV) (Table 2), solutions of which in benzene were subjected to photochemical trans — cis and cis — trans isomerization. The introduction of an iodine atom into the molecule of the perinaphththioindigo (dye VI) and into the molecules of the dyes (VII-XIV) (Table 2) affects the absorption spectra of the trans and cis forms in just the same way as the introduction of chlorine or bromine [3]. The iodine-substituted dyes were found to have an increased capacity for photochemical trans—cis isomerization.

EXPERIMENTAL

A solution of iodine chloride in acetic acid was prepared as described previously [5]. The concentration of IC1 was $900~\mathrm{g/liter}$.

* For Communication XVI, see [1].

Rubezhnoe Branch of the Scientific-Research Institute of Organic Intermediates and Dyes, Rubezhnoe. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1034-1036, August, 1973. Original article submitted January 31, 1972.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Properties of Substances (II-VI)

Comp.	Empirical formula	m p, °C	I		
			found	calc.	Yield, %
II III IV V VI	C ₁₁ H ₅ IOS C ₁₂ H ₉ IO ₄ S C ₁₄ H ₃ IO ₂ S C ₁₂ H ₇ IOS C ₂₄ H ₁₀ I ₂ O ₂ S ₂ *	201—202 238—239 116—117 131—133 †	40,53 32,63 34,22 38,87 39,00	40,65 32,69 34,46 38,90 39,15	34,4 98 85,1 72,3 55,8

^{*}For the dye (VI) in trichlorobenzene, $\lambda_{\rm max}$ of the trans form is 652.5 nm ($\epsilon_{\rm max}$ 3.4 · 10⁴), and $\lambda_{\rm max}$ for the cis form 520.5 nm ($\epsilon_{\rm max}$ 2.0 · 10⁴).

TABLE 2. Properties of the Dyes

$$\begin{array}{c|c}
 & C & S \\
 & C & C \\
 & S' & O \\
\end{array}$$
(A)

Comp.	R	Emplify all formula	Found, %	
		Empirical formula	С	н
VII VIII IX X XI XII XIII XIV	6-OC ₂ H ₅ 4-CH ₃ , 6-Cl 6-Cl H 5-NO ₂ 4,5- Benzo 6,7-(1'-Cl)- Benzo 5,6-Benzo, 7-C1	C ₂₂ H ₁₃ IO ₃ S ₂ C ₂₁ H ₁₀ CIIO ₂ S ₂ C ₂₀ H ₈ CIIO ₂ S ₂ C ₂₀ H ₉ IO ₂ S ₂ C ₂₀ H ₈ NIO ₄ S ₂ C ₂₄ H ₁₁ IO ₂ S ₂ C ₂₄ H ₁₀ CIIO ₂ S ₂ C ₂₄ H ₁₀ CIIO ₂ S ₂	51,11 48,61 47,20 50,66 46,30 54,91 52,07 51,65	2,44 2,24 1,45 1,82 1,83 2,09 1,57 1,66

Comp.	Calc.,%		trans form		cis form		Δλ*, nm		
	С	н	nm nm	ε·10 4	λmax• nm	ε · 10 4	trans form	cis form	Yield,%
VIII VIII IX X XI XII XIII XIV	51,17 48,43 47,40 50,85 46,43 55,18 51,76 51,76	2,53 1,93 1,59 1,92 1,55 2,12 1,81 1,81	589 597,5 598,5 600 603,5 606 618 621	3,3 3,7 3,3 3,0 4,0 3,4 2,8 3,3	471,5 485 486,5 487,5 494,5 491 506,5 511	1,6 1,8 1,7 1,6 2,2 1,6 1,4	7 6,5 8,5 8 9,5 6 9	1,5 6 6,5 5,5 8,5 4 2,5	29 33 37 43 40 63 64 53

^{*} $\Delta\lambda$ is the difference between λ_{max} of the dye of formula A and the unsubstituted dye [4].

 $\frac{6\text{-Iodonaphtho}[1,8\text{-bc}]\text{thiophen-2-one} \ (\text{II}).}{166\ \text{mmoles})\ \text{in acetic acid was added to 5 g} \ (26.8\ \text{mmoles})\ \text{of naphtho}[1,8\text{-bc}]\text{thiophen-2-one}\ \text{and the resulting mixture was boiled with 400 ml of water, after which 148 ml of a 27.5% solution of sodium bisulfite was added. After stirring, the precipitate was filtered off, washed with water, and dried. Yield 5.4 g (64.4%), mp 171-176°C. After a single recrystallization from ethanol, mp 198-199°C. For the chemically pure product, mp 201-202°C.$

The substances given in Tables 1 and 2 were obtained by methods described previously [2,3].

LITERATURE CITED

- 1. M. A. Mostoslavskii, V. V. Yadrikhinskii, and O. K. Yadrikhinskaya, Zh. Fiz. Khim., 44, 2979 (1970).
- 2. M. A. Mostoslavskii, S. I. Saenko, and G. A. Yugai, Zh. Vses. Khim. Obshchestva im. D. I. Mendeleeva, 13, 462 (1968).
- 3. S. I. Saenko and M. A. Mostoslavskii, Khim, Geterotsikl, Soedin, 1031 (1970).
- 4. M. A. Mostoslavskii, S. I. Saenko, and M. M. Shapkina, Zh. Vses. Khim. Obshchestva im. D. I. Mendeleeva, 12, 702 (1967).
- 5. Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag, Stuttgart (1960), p. 527.

[†] The dye undergoes no change up to 300°C, and on further heating it is impossible to determine a distinct melting or decomposition point.